A gating model for wildtype and R1448H Nav1.4 channels in paramyotonia
نویسندگان
چکیده
We studied the consequences of the Nav1.4 mutation R1448H that is situated in the fourth voltage sensor of the channel and causes paramyotonia, a cold-induced myotonia followed by weakness. Previous work showed that the mutation uncouples inactivation from activation. We measured whole-cell Na(+) currents at 10, 15, 20, and 25°C using HEK293 cells stably transfected with wildtype (WT) and R1448H Na(+) channels. A Markov model was developed the parameters of which reproduced the data measured on WT and R1448H channels in the whole voltage and temperature range. It required an additional transient inactivated state and an additional closed-state inactivation transition not previously described. The model was used to predict single-channel properties, free energy barriers and temperature dependence of rates. It allowed us to draw the following conclusions: i) open-state inactivation results from a two-step process; ii) the channel re-openings that cause paramyotonia originate from enhanced deactivation/reactivation and not from destabilized inactivation; iii) the closed-state inactivation of R1448H is strikingly enhanced. We assume that latter explains the episodic weakness following cold-induced myotonia.
منابع مشابه
Pii: S0960-8966(99)00060-7
Effects of the antiarrhythmic and antimyotonic drug mexiletine were studied on two sodium channel mutants causing paramyotonia congenita (R1448H) and an overlap paramyotonic and hyperkalemic paralytic syndrome (M1360V). Channels were expressed in human embryonic kidney cells and studied electrophysiologically, using the whole-cell patch-clamp technique. Compared to the wild-type, channel, both ...
متن کاملGating Pore Currents in DIIS4 Mutations of NaV1.4 Associated with Periodic Paralysis: Saturation of Ion Flux and Implications for Disease Pathogenesis
S4 voltage-sensor mutations in CaV1.1 and NaV1.4 channels cause the human muscle disorder hypokalemic periodic paralysis (HypoPP). The mechanism whereby these mutations predispose affected sarcolemma to attacks of sustained depolarization and loss of excitability is poorly understood. Recently, three HypoPP mutations in the domain II S4 segment of NaV1.4 were shown to create accessory ionic per...
متن کاملPreferred mexiletine block of human sodium channels with IVS4 mutations and its pH-dependence.
The effects of extracellular pH (6.2, 7.4 and 8.2) and 0.1 mM mexiletine, a channel blocker of the lidocaine type, are studied on two mutations of the fourth voltage sensor of the Nav1.4 sodium channel, R1448H/C. The fast inactivated channel state to which mexiletine preferentially binds is destabilized by the mutations. By contrast to the expected low response of R1448H/C carriers, mexiletine ...
متن کاملVoltage-dependent block of normal and mutant muscle sodium channels by 4-Chloro-m-Cresol.
1 The effects of 4-Chloro-m-Cresol (4-CmC) were examined on heterologously expressed wild type (WT), Paramyotonia Congenita (R1448H) and Hyperkalemic Periodic Paralysis (M1360V) mutant alpha-subunits of human muscle sodium channels. 2 Block of rested sodium channels caused by 4-CmC was concentration-dependent with an ECR50 of 0.40 mM in WT, 0.45 mM in R1448H and 0.49 mM in M1360V. 3 Inactivatio...
متن کاملA phenylalanine residue at segment D3-S6 in Nav1.4 voltage-gated Na(+) channels is critical for pyrethroid action.
Mammalian voltage-gated Na(+) channels were less sensitive to pyrethroids than their insect counterparts by 2 to 3 orders of magnitude. Deltamethrin at 10 microM elicited weak gating changes in rat skeletal muscle alpha-subunit Na(+) channels (Nav1.4) after > 30 min of perfusion. About 10% of the peak current was maintained during the 8-ms, +50-mV pulse and, upon repolarization to -140 mV, the ...
متن کامل